
Copyright 2015 Intercax LLC 1

75 Fifth Street NW, Suite 312

Atlanta, GA 30308, USA

voice: +1-404-592-6897

web: www.Intercax.com

email: info@Intercax.com

Dr. Dirk Zwemer, Intercax LLC

Technote: SysML Parametrics for Roll-up Calculations

Abstract
Four approaches to adding roll-up calculations to SysML models using Intercax parametric

solvers are demonstrated.

Introduction
SysML parametrics are a way to add spreadsheet-like analysis to descriptive architectural

diagrams. Roll-up calculations are among the most common use cases in systems engineering. Starting

with a multi-level bill of materials or master equipment list, modelers want to calculate total mass, total

cost, or any system metric in general, based on the individual values of all the parts in the system.

This Technical Note describes a number of approaches that can accomplish these goals using

Intercax parametric solvers

 ParaMagic® for MagicDraw

 Melody™ for Rational Rhapsody

 Solvea™ for Enterprise Architect

 ParaSolver™ for PTC Integrity Modeler

These approaches take advantage of SysML’s inheritance, multiplicity, redefinition, and recursion

features, without eliminating the individuality of each component and assembly.

We step through a series of methods with progressively increasing complexity and versatility.

1. The base level approach simply puts a constraint like a = b + c + d inside each assembly,

adding the values of each of the assembly’s three parts.

2. The first step in adding flexibility is to use a constraint such as a = sum(b) to add the

values for all the parts. Here, b is an array of n parts where n is not known. This requires

that all parts have a common supertype.

3. Making the constraint a property of the supertype reduces the number of parametric

relations necessary for the roll-up down to one by using redefinition and recursion.

4. The final example treats the case where multiple roll-ups are needed, but not all over

the same set of parts. Multi-level inheritance trees can enable this.

http://www.intercax.com/
mailto:info@InterCAX.com

Copyright 2015 Intercax LLC 2

This exercise assumes that the reader is familiar with SysML structure and parametric diagrams

and the operation of parametric solvers. For those needing more background, the user guides and

tutorials for Intercax parametric solvers are a good place to start. More general background is available

in several published reference works on SysML modeling.

Not all calculations in systems engineering are complex, or require a powerful and expensive

simulation tool. Roll-ups, unit conversion, and requirements verification are all valuable time-savers

when embedded within the model. As SysML models seek interoperability with other engineering tools,

translating between data models becomes a critical part of the process. Parametric solvers are

becoming an important part of the system engineer’s toolbox.

Strategy 1 – Quantity-Specific Constraints
A simplified vehicle assembly tree is shown in Figure 1. Our objective is to add up the masses of

the individual components and subassemblies to find the total mass of the vehicle. This calculation will

be applied to the instance of the vehicle model in Figure 2.

Figure 1 Vehicle Assembly Tree Figure 2 Instance of Vehicle Assembly Tree

The Vehicle and Drivetrain blocks contain parametric diagrams, shown in Figure 3 and Figure 4.

Note the two constraints (in green) are different; one contains three terms in the sum and the other

four. If an additional component is added to either the vehicle or drivetrain, it would be necessary to

edit the constraint block and parametric diagram to include it in the roll-up calculation.

L eve l 1 BDD[P ac kage] L eve l 1bdd []

a 31 : Ad d 3

c o n s tra in ts

m a ss : Kg

v a lu e s

«bl oc k»

Ve hic le

c o n s tra in ts

a 41 : Ad d 4

v a lu e s

m a ss : Kg

«bl oc k»

Driv e tra in

v a lu e s

m a ss : Kg

«bl oc k»

Tra ns mis s ion

v a lu e s

m a ss : Kg

«bl oc k»

Cha ss is

v a lu e s

m a ss : Kg

«bl oc k»

Driv e sha ft

v a lu e s

m a ss : Kg

«bl oc k»

Body

v a lu e s

m a ss : Kg

«bl oc k»

Engine

v a lu e s

m a ss : Kg

«bl oc k»

Diffe re ntia l

d ie n

c ha s si sb od y

d rtr

d rive trai n

In s ta nc e 01 B DDIn s ta nc e 01[P ac ka ge] bdd []

body = vehic le.body

chassi s = vehic le.chass is

drivetrai n = vehic le.dri vetrain

mass = ""

«bl oc k»

v e hic le : V ehic le

mass = 250.0

«bl oc k»

v e hic le .dr iv e tra in.tr : Tra nsm is sion

di = vehic le.drivetrai n.di

dr = vehic le.drivetrai n.dr

en = vehic le.dri vetrain.en

mass = ""

tr = vehi cl e.drivetrain.tr

«bl oc k»

v e hic le .dr iv e tra in : Dr iv etra in

mass = 100.0

«bl oc k»

v e hic le .dr iv e tra in.di : Di ffe re ntia l

mass = 50.0

«bl oc k»

v e hic le .dr iv e tra in.dr : Dr iv e sha ft

mass = 500.0

«bl oc k»

v e hic le .dr iv e tra in.e n : E ngine

mass = 1000.0

«bl oc k»

v e hic le .c ha s sis : Cha ss is

mass = 500.0

«bl oc k»

v e hic le .body : Body

Copyright 2015 Intercax LLC 3

Figure 3 Vehicle Parametric Diagram Figure 4 Drivetrain Parametric Diagram

However, this approach will work for the existing model. In Figure 5 below, the ParaMagic® browser

shows the problem before solution. The mass of the Vehicle block is set with target causality and the

Drivetrain subassembly mass is also an unknown with undefined causality. After solution (Figure 6), a

total mass of 2400 kilograms is obtained. The mass of any component could be changed, either in the

browser or the instance model, and the problem re-solved without changing the parametric models.

Figure 5 ParaMagic Browser before solution Figure 6 ParaMagic Browser after solution

 At this point, it is worth mentioning an alternate approach that could be used, but with significant

drawbacks. Rather than creating a separate block for each type of component, a single block, e.g.

Component, is created and the individual parts are differentiated only at the instance level, e.g.

engine:Component. Each assembly is composed of 1..* Components and the calculation is simply a sum

over 1..* mass values. Additional parts can be added to the vehicle without changing the parametric

model.

Ve h ic le L 1 PARVe h ic le[B lo ck] par []

« const ra in t»

a 31 : Add3

{a = b + c + d }

a : Kg

b : Kg

c : Kg

d : Kgma ss : Kg

driv e tra in : Dr iv etrain

ma ss : Kg

c ha s sis : Cha ss is

ma ss : Kg

body : Body

ma ss : Kg

«equal »

«equal »

«equal »

«equal »

Drive tra in L 1 P A RDrive tra in[B lo ck] par []

« const ra in t»

a 41 : Add4

{a = b + c + d + e }

a : K g

b : K g

c : K g

d : K g

e : K gma ss : Kg

tr : Tra ns mis s ion

ma ss : Kg

di : Diffe rential

ma ss : Kg

dr : D r iv e s ha ft

ma ss : Kg

e n : E ngine

ma ss : Kg

«equal »

«equal »

«equal »

«equal »

«equal »

Copyright 2015 Intercax LLC 4

The drawback to this approach is that the interconnections between Components cannot be shown in a

SysML Internal Block Diagram. An IBD cannot be created at the instance level, so a diagram like Figure 7

could not be created. However, the next section will describe an extension to this approach without the

same drawback.

Figure 7 Vehicle Interconnections in SysML Internal Block Diagram

Strategy 2 – Complex Aggregates
Our second approach starts with defining a Component block, with mass as a value property. All

the Vehicle parts and assemblies are subtypes of Component and inherit mass, as shown in Figure 8. The

assemblies in the tree, Vehicle and Drivetrain, are each assigned 1..* shared properties of type

Component, as shown at the bottom of the same figure. The main structure diagram (Figure 9) will be

similar to the original in Figure 1 because all the part properties retain their individual identities and an

IBD such as Figure 7 can be created. However, the shared properties typed by Component will be used

in the roll-up calculations.

Figure 8 Adding Component to Vehicle Model Figure 9 Modified Vehicle Assembly Tree

The Vehicle and Drivetrain blocks still contain parametric diagrams, shown in Figure 10 and

Figure 11, but the two constraint properties (in green) are usages of the same constraint block,

Ve h ic le IB DVe h ic le[B lo ck] ibd []

tr : Tra ns mis s ion

di : Diffe rentialdr : D r iv e s ha ft

e n : Engine

driv e tra in : Dr iv etrain

c ha s sis : Cha ss is

body : Body

T o rq u e

Fue l

L eve l 2 BDD[P ac ka ge] L eve l 2bdd []

v a lu e s

m a ss : Kg

«bl oc k»

Compone nt

«bl oc k»

Ve hic le

«bl oc k»

Driv e tra in

«bl oc k»

Ve hic le

«bl oc k»

Driv e tra in

«bl oc k»

Tra ns mis s ion

«bl oc k»

Driv e sha ft

«bl oc k»

Engine

«bl oc k»

Cha ss is

«bl oc k»

Body

v a lu e s

m a ss : Kg

«bl oc k»

Compone nt

v a lu e s

m a ss : Kg

«bl oc k»

Compone nt

«bl oc k»

Diffe re ntia l

c om p 1 ..* c om p 1 ..*

L eve l 2 BDD 2[P ac ka ge] L eve l 2bdd []

c o n s tra in ts

m s 1 : Mas s Su m

re fe re n c e s

c om p : Co m p on e nt [1 .. *]

«bl oc k»

Ve hic le

c o n s tra in ts

m s 2 : Mas s Su m

re fe re n c e s

c om p : Co m p on e nt [1 .. *]

«bl oc k»

Driv e tra in

«bl oc k»

Tra ns mis s ion

«bl oc k»

Diffe re ntia l

«bl oc k»

Driv e sha ft

«bl oc k»

Cha ss is

«bl oc k»

Engine

«bl oc k»

Body

d ie n d rtr

d rive trai nb od y c ha s si s

Copyright 2015 Intercax LLC 5

MassSum. The constraint in MassSum, a = sum(b), is independent of the number of Components whose

mass is being summed over. Such calculations are called complex aggregates.

Figure 10 Vehicle Parametric Diagram Figure 11 Drivetrain Parametric Diagram

The additional overhead in this approach arises in building the instance model. Each instance of a part,

e.g. vehicle.body:Body, plays two roles in the next assembly up, as a specific part property, e.g.

body:Body, and as a shared property, comp:Component (1..*). In MagicDraw, this is accomplished by

opening the specification window for the assembly instance, here vehicle:Vehicle, assigning

vehicle.body:Body to the slot body and to the slot comp. In the second case (Figure 12), comp also

includes vehicle.chassis and vehicle.drivetrain, the other direct parts of Vehicle. As shown in Figure 13,

the same pattern follows at the vehicle.drivetrain level, where its four parts play double roles, as

individual parts and as generic components. The fact that the same instance is playing a double role is

why we use shared property relationships for the components rather than a second set of part property

relationships.

Figure 12 Assigning instance to shared properties Figure 13 Detail from Instance diagram

The parametric browser appearance in this situation is very similar to Figure 5, except for a double

appearance of the part instance values, and the results of the calculation are the same. At the same

time, the IBD in Figure 7 can be created without problem.

Strategy 3 – Complex Aggregates and Recursion
Even greater economies of modeling effort can be enjoyed by using recursion. Noting that the

same constraint block is used in both the Drivetrain and Vehicle assemblies (and any other assemblies

that would be created), we can choose to build that parametric diagram at the Component level (Figure

14), where it is inherited by Drivetrain, Vehicle and all the other structural elements.

Veh ic le L2 PARVeh ic le[B lock] par []

mass : Kg

comp : Component [1 ..*]

«const ra in t»

ms1 : MassS um

{a = s um (b)}

a : Real

b : Real

^mass : K g

«equal »

«equal »

Drive tra in L 2 PA RDrive tra in[B lo ck] par []

ma ss : Kg

c omp : Component [1 ..*]

«const ra in t»

ms 2 : Ma s sS um

{a = s u m (b)}

a : Re al

b : Re al

^mas s : K g

«equal »

«equal »

In s ta nc e 02 B DDIn s ta nc e 02[P ac ka ge] bdd []

body = vehic le.body

chassi s = vehic le.chass is

comp = vehic le.body, vehic le.chass is , vehic le.dri vetrain

drivetrai n = vehic le.dri vetrain

mass = ""

«bl oc k»

v e hic le : V ehic le

comp = vehic le.drivetrai n.di , vehic le.drivetrai n.en,

vehi cl e.drivetrain.tr, vehic le.dri vetrain.dr

di = vehic le.drivetrai n.di

dr = vehic le.drivetrai n.dr

en = vehic le.dri vetrain.en

mass = ""

tr = vehi cl e.drivetrain.tr

«bl oc k»

v e hic le .dr iv e tra in : Dr iv etrain

mass = 250.0

«bl oc k»

v e hic le .dr iv e tra in.tr : Tra nsmiss ion

mass = 100.0

«bl oc k»

v e hic le .dr iv e tra in.di : Di ffe re ntia l

mass = 50.0

«bl oc k»

v e hic le .dr iv e tra in.dr : Dr iv es haft

mass = 500.0

«bl oc k»

v e hic le .dr iv e tra in.e n : E ngine

mass = 1000.0

«bl oc k»

v e hic le .c ha s sis : Cha ss is

mass = 500.0

«bl oc k»

v e hic le .body : Body

 : , : , : , : ,

 : , , : , : ,

Copyright 2015 Intercax LLC 6

Figure 14 Component Parametric Model Figure 15 Component Inheritance and Recursion

Relationships

To create that diagram, Component needs to be able to create references to the parts that make up that

component. This is shown in the recursive shared property relationship on the right side of Figure 15.

Note that this relationship has a 0..* multiplicity, zero applying for leaf-level components like Engine

that have no subparts in this model.

The instance model is created as in the previous example, except that the slot comp remains empty for

leaf-level components. The results of the roll-up calculation are the same. New parts and new levels of

parts can be added to the structure hierarchy with no changes to the schema except

 Creating new blocks to represent those parts, and

 Making those new blocks specializations of Component

Strategy 4 – Multiple Inheritance
Adding a second set of roll-up calculations, e.g. rolling up cost as well as mass, is often

straightforward. Adding cost:$ as a value property to Component in Figure 18 and adding a second

constraint property cs1:CostSum to the parametric diagram in Figure 14 would be all that was needed.

The problem arises if the two calculations apply to different sets of parts, e.g. there are software

components with cost, but no mass.

Figure 16 shows how to set up such a problem. Another level is added to the inheritance

hierarchy, Supercomponent, with a value property cost. Two new blocks, Engine SW and Cabin SW, have

been added to the model representing software with cost, but no mass. They inherit directly from

Supercomponent. The original parts inherit from Component, which inherits from Supercomponent.

Component retains the same parametric diagram (Figure 17), while Supercomponent shows recursion on

itself and the cost calculation parametrics in Figure 18.

Building the instance model is similar to the previous two examples, but now instances of the

original parts may fill three roles in an assembly, e.g.

 As a part property of type Engine

 As a shared property of type Component (1..*)

 As a shared property of type Supercomponent (1..*)

Com ponent L3 PA RCom ponent[B lock] par []

mass : Kg

comp : Component [0 .. *]

«const ra in t»

ms1 : MassS um

{a = s um (b)}

a : Real

b : Real

mass : Kg

«equal »

«equal »

L eve l 3 BDD[P ac kage] L eve l 3bdd []

c o n s tra in ts

m s 1 : Mas s Su m

v a lu e s

m a ss : Kg

«bl oc k»

Compone nt

«bl oc k»

Ve hic le

«bl oc k»

Driv e tra in

«bl oc k»

Tra ns mis s ion

«bl oc k»

Engine

«bl oc k»

Diffe re ntia l

«bl oc k»

Driv e sha ft

«bl oc k»

Body

«bl oc k»

Cha ss is

c om p

0 ..*

Copyright 2015 Intercax LLC 7

Figure 16 Two levels of Inheritance for Roll-up Calculations

Figure 17 Component Parametric Model Figure 18 Supercomponent Parametric Model

These same general approaches can be extended to additional roll-up calculations, including additional

layers of inheritance and multiple inheritance. It is important to evaluate the parametric solver tool

capabilities to handle inheritance, recursion and complex aggregates for the class of problems the

modeler needs to solve.

About the Author
Dr. Dirk Zwemer (dirk.zwemer@intercax.com) is President of Intercax LLC, Atlanta, GA and holds OCSMP

certification as Model Builder - Advanced.

For further information, visit us at www.intercax.com or contact us at info@intercax.com.

L eve l 4 BDD[P ac ka ge] L eve l 4bdd []

c o n s tra in ts

c s1 : Co s tSu m

v a lu e s

c os t : $

«bl oc k»

Superc omponent

c o n s tra in ts

m s 1 : Mas s Su m

v a lu e s

m a ss : Kg

«bl oc k»

Compone nt

«bl oc k»

Ve hic le

«bl oc k»

Driv e tra in

«bl oc k»

Tra ns mis s ion

«bl oc k»

Body

«bl oc k»

Engine

«bl oc k»

Driv e sha ft

«bl oc k»

Engine SW

«bl oc k»

Diffe re ntia l

«bl oc k»

Ca bin SW

«bl oc k»

Cha ss is

s c

0 ..*

c om p

0 ..*

Com ponent L3 PA RCom ponent[B lock] par []

mass : Kg

comp : Component [0 .. *]

«const ra in t»

ms1 : MassS um

{a = s um (b)}

a : Real

b : Real

mass : Kg

«equal »

«equal »

Su p erco m p on e n t L 4 PA RSu p erco m p on e n t[B lo ck] par []

c os t : $

s c : Superc ompone nt [0 .. *]

«const ra in t»

c s1 : CostSum

{a = s u m (b)}

a : $

b : $

c os t : $

«equal »

«equal »

mailto:dirk.zwemer@intercax.com
http://www.intercax.com/
mailto:info@intercax.com

